
ADA 95 AND SAF'ETY-CRITICAL SOFTWARE
C. Michael Holloway

NASA Langley Reseach Center
Assessment Technology Branch

Email:

ABSTRACT

Mail Stop 130
Hampton, VA 23681-0001
C.M.Holloway@LaRC .NASA.GOV

The revised Ada standard (ISO/IEC-8652: 1995, com-
monly referred to as Ada 95) was released by the
International Standards Organization (E O) in Feb-
ruary 1995. One of the unique features of this stan-
dard is that it is divided into a Core Language,
which must be fully implemented, and several Spe-
cialized Needs Annexes, which provide standard def-
initions for additional features for particular
application areas.

Of particular interest to developers of safety-critical
software is Annex H: Safety and Security. This
Annex specifies detailed documentation require-
ments and facilities to support enhanced under-
standing of program execution paths and for
reviewing object code. It also provides facilities for
restricting the use of certain language constructs.
This paper will discuss Annex H and will also
present the charter of the recently formed Annex H
Rapporteur Group.

INTRODUCTION

The International Standards Organization (ISO)
published the revised Ada standard [l l and an
accompanying Rationale [21 in February 1995. The
new standard replaces the 1987 IS0 standard [31,
which was identical to the 1983 American National
Standards Institute (ANSI) standard [41. To distin-
guish the language defined by the new standard
from that defined by the older standards, the names
Ada 95 and Ada 83 are frequently used; this naming
convention is adopted here'. The primary purpose of
this paper is to discuss the provisions made in the

Whether this particular convention is an appropriate
one has been the subject of several amusing discussions in
the comp.lang.ada Internet newsgroup.

Ada 95 standard to support the development of
safety-critical software.

To accomplish this purpose, the paper is organized in
the following manner. First, the history of the revi-
sion process is reviewed. Second, the specific safety-
related requirements developed for the language
revision are enumerated. Third, the details of the
Ada 95 Safety and Security Annex (Annex H) are
discussed. Fourth, the charter of the recently estab-
lished Annex H Rapporteur Group (HRG) is pre-
sented. Fifth, concluding remarks are made.

THE REVISION PROCESS

Before discussing the particulars of the Ada 95 pro-
visions for developing safety-critical software, a brief
discussion of the history of the revision process is
appropriate. The discussion below is based on
[51; the interested reader is encouraged to consult
this document for additional details not included
here.

The Ada programming language was originally
developed to meet the specific requirements of the
United States Department of Defense (DOD) for a
single language for real-time embedded systems
[61. However, after the ANSI standard was released
in 1983, interest in the language grew beyond a sin-
gle application domain and a single agency. Interna-
tional use of Ada was such that the IS0 also adopted
the ANSI standard.

In 1988, as part of the routine 5-10 year reexamina-
tion of existing standards, the decision was made to
revise the Ada language, with the intent of creating
a new, joint ANSIDSO standard. ANSI sponsored
the revised standard, with the DOD managing the
development through the Ada Joint Program Office
(AJPO). The AJPO established the Ada 9X Project
Office, and named Christine Anderson as the project
manager in October 1988.

504
U.S. Government work not protected by U.S. Copyright.

http://NASA.GOV

The Ada 9X Project Plan was released in January,
1989 171. The plan stated the goal of the revision
process clearly and succinctly:

The overall goal of the Ada 9X Project is to revise
ANSI IMIL-STD-1815A to reflect current essen-
tial requirements with minimum negative impact
and maximum positive impact to the Ada commu-
nity.

According to the plan, the goal was to be achieved in
three main phases: determination of the essential
requirements for the revised language; the mapping
of these requirements onto language changes fol-
lowed by the adoption of the revised language by all
major standards organizations; and the transition in
use from Ada 83 to Ada 9X.

The determination of essential requirements began
with a Workshop in June 1989 181, included addi-
tional workshops and solicitation of revision
requests from users world-wide (over 750 were
received), and culminated in the publishing of a
requirements document in December 1990
[91 and an associated rationale in May 1991 [lo].
The requirements document established 41 Require-
ments and 22 Study Topics, and directed the map-
pinghevision team to attempt to satisfy all of the
Requirements and as many of the Study Topics as
possible. In recognition of the specialized needs of
particular application areas, the document recom-
mended that the revised language definition be
divided into a Core language, which all validated
compilers must implement, and a small number of
specialized Annexes, which may or may not be
implemented.

The mappinghevision team followed the recommen-
dations in the requirements document and the final,
approved language definition includes a Core lan-
guage (Sections 1-13, Annexes A, B, and J) and the
following Specialized Needs Annexes:

Annex C: Systems Programming
Annex D: Real-Time Systems
Annex E: Distributed Systems
Annex F: Information Systems
Annex G: Numerics
Annex H: Safety and Security

These specialized needs annexes provide standard
definitions for additional features for particular
application areas. Many of the features described in
these annexes are provided by various Ada 83 com-

piler vendors, but in non-standard ways. The Ada
95 standard provides a means to reduce the non-uni-
formity among compilers for important domains.

SAFETY REQUIREMENTS

Although many parts of the Ada 95 definition have
an impact on the development of safety-critical soft-
ware, our focus in this paper is on the particular fea-
tures defined in Annex H. These features were
designed to address one Study Topic and three
Requirements identified in the Ada 9X Require-
ments. These are enumerated below, under the
headings used in the Requirements document.

Predictability of Execution
Although in many application domains, determining
the precise behavior of the execution of a program
may be unnecessary so long as the program produces
the appropriate output, developers of safety-critical
applications1 often must be able to determine pre-
cise behavior by examination of the program text.
Execution must be predictable. To address this
need, one Study Topic and one Requirement were
identified.

Study Topic S9.1-A(1) Determining
Implementation Choices - Wherever Ada 9X
explicitly allows implementation-defined choices that
affect program behavior, implementations shall be
required either to document the choice that has been
made (or that situations that control what choice is
made) or Ada 9X shall provide a mechanism for con-
trolling the choice.

Requirement R9.1-A(2) Ensuring Canonical
Application of Operations- Ada 9X shall pro-
vide a mechanism, applicable to a region of program
text, for restricting any freedom otherwise allowed to
reorder, replace, or remove actions involving pre-
defined operations.

Certifiability
The complexity of translating a high-level program-
ming language into object code almost guarantees
that any translator will be less than 100 per cent

Nearly all that is said here about safety-critical appli-
cations also applies to secure applications, which is why
both the requirements document and the language stan-
dard group safety and security together. Because the
focus of this paper is on safety, mention of security-related
aspects is omitted.

505

accurate. As a result, developers of safety-critical
applications tend to certify software correctness
based on generated object code, and not on high-level
language source code. In such cases, the source code
is treated as documentation for the object code, and
clear correspondence between the two is required.
The following requirement addressed this need.

Requirement R9.2-A(1) Generating Easily
Checked Code- Ada 9X shall provide a mecha-
nism for advising a compiler that code should be gen-
erated in a style that allows it to be checked against
the source text with reasonable effort.

Enforcement of Safety-Critical
Programming Practices
Some features of a programming language that are
perfectly acceptable for many \applications may be
inappropriate for safety-critical applications. Non-
determinism is one example, and dynamic storage
allocation is another. As a result, projects develop-
ing safety-critical software typically restrict the lan-
guage features that may be used. The following
requirement addressed this need.

Requirement R9.3-A(1)- Ada 9X shall allow a
mode in which a compiler enforces adherence to cod-
ingpractices beyond those imposed by the rules of the
language.

ANNEX H

In order to address the above mentioned require-
ments, Annex H provides five specific facilities:
pragma Normalize-Scalars, imposition of additional
documentation requirements, pragma Reviewable,
pragma Inspection-Point, and a set of restrictions to
be used with pragma Restrictions’. Each of these
facilities is discussed below.

Pragma Normalize-Scalars
The syntax of this pragma is as follows:

pragma Normalize-Scalars;

The pragma requires that each scalar object that is
not explicitly initialized in the source text is initial-
ized by the compiler to some documented default
value. Whenever possible, the default value should
be an invalid (that is, out-of-range) value.

Pragma Restrictions is part of the Core language; it is
defined in section 13.12.

The purpose of the pragma is two-fold: (1) to provide
predictable behavior in the presence of uninitialized
scalars, and (2) to assist programmers in locating
and correcting instances of uninitialized scalars.
The pragma partially addresses the issues raised in
Study Topic SS.l-A(l).

Documentation Requirements
To address those aspects of Study Topic S9.l-A(1) not
addressed by pragma Normalize-Scalars, the Annex
requires that implementations “document the range
of effects for each situation that the language rules
identify as either a bounded error2 or as having an
unspecified effect. ” Three examples of situations to
which this requirement applies are discussed below.

Parameter Passing Mechanism - Ada language
rules permit some parameters to be passed either by
reference or by copy. In fact, an implementation
may choose a different mechanism for different calls
of the same subprogram. To comply with Annex H, a
compiler must indicate the parameter passing mech-
anism chosen for all calls.

Storage Management- an implementation must
document the storage management procedures used
so as to permit review of the object code to ensure
that any applicable storage restrictions are not vio-
lated.

Evaluation of Numeric Expressions - evaluat-
ing numeric expressions can produce widely varying
results when the evaluation involves using extended
ranges or extra precision. For this reason to comply
with Annex H, an implementation must so document
the evaluation approach used, that for any given
expression, the range and precision with which it is
computed is clear.

Pragma Reviewable
The syntax of this pragma is as follows:

pragma Reviewable;

The pragma partially addresses Requirement R9.2-
A(1). It requires the compiler to provide adequate
information for analysis and review of generated
object code; this information is to be provided in both
a machine and a human readable form. Some of the

A bounded error is an error that the language rules do
not require to be detected by implementations, but for
which the rules do require that the range o f possible
effects to be bounded.

506

particular types of information that must be pro-
vided are discussed below.

Elaboration Order for Library Units - the pre-
cise order in which units are elaborated must be
clear.

Object Lifetime Analysis - Sufficient informa-
tion must be supplied about each object to enable a
user to determine which objects are assigned to
which registers and for how long each assignment
lasts.

Initialization Analysis - Each reference to a sca-
lar object must identify whether the object is “known
to be initialized” or “possibly uninitialized”. This
requirement is not superceded by the use of pragma
Normalize-Scalars.

Machine Instructions Used - A list must be pro-
vided of all the machine instructions used.

Source and Object Code Relationship - For
each declaration and statement in a source program,
the corresponding generated object code sequences
must be identified. If a particular source code state-
ment results in no object code, this must be explicitly
identified.

Exception Analysis - All compiler generated run-
time checks in the object code must be identified.
Also, each construct must be identified for which the
implementation detects the possibility of erroneous
execution.

Pragma Inspection-Point
To further address Requirement R9.2-A(1) and to
also partially address Requirement R9.1-A(2), the
pragma Inspection-Point is provided. The syntax of
the pragma is as follows:

pragma Inspection-Point [(name {, name})];

where each name must denote the declaration of an
object.

This pragma provides a means for specifying points
in the program text at which the values of particular
objects must be available. In particular, for each
inspection point, at the corresponding point(s) in the
object code, a means must be provided for determin-
ing the values of the specified objects (or, if no objects
were specified, of all live objects).

One interesting aspect of inspection points is that
they provide some of the capabilities of an assertion

facility. As an example, suppose at some point in a
program we know that the value of object X should
be strictly greater than the value of object Y, then we
can write

pragma Inspection-Point (X, Y);

at the appropriate point in the code. If we execute
the program using a suitable debugger, it can be sus-
pended at the point(s) in the object code correspond-
ing to this inspection point. We can then examine
the values of X and Y and determine if X is strictly
greater than Yl.

Inspection points also provide a mechanism that can
be used by special tools to analyze and verify partic-
ular properties of the object code. In fact, given a
suitable mathematical specification, an adequate
tool, and appropriate use of inspection points, a par-
tial or full formal mathematical verification of object
code would be possible.

Allowed Restrictions
The final facility defined in Annex H addresses
Requirement R9.3-A(1) by providing a means by
which use of particular language features may be
prohibited. The Core Language includes a pragma
Restrictions, with the following syntax:

pragma Restrictions (restriction {, restriction));

where restriction is either an identifier or of the form:

identifier => expression

The Annex defines a number of possible restrictions
that may be given, including some that are also
defined (identically) in the Annex for Real-Time Sys-
tems (Annex D). The following are a few of the pos-
sible restrictions along with their meanings:

No-Exceptions: Prohibits using raise statements
and exception handlers and ensures that no lan-
guage-defined run-time checks are generated.

No-Floating-point: Prohibits using predefined
floating point types and operations and declara-
tions of new floating point types.

No-Allocators: Prohibits using allocators.

No-Access-Subprograms: Prohibits the declara-
tion of access-to-subprogram types.

Assertions were provided in an early draft of the
Annex, but they were ultimately removed because of the
many subtleties involved in their implementation.

507

No-Dispatch: Prohibits, for any tagged subtype
T, occurrences of T'Class.
No-IO: Prohibits semantic dependence on any of
the library IO units.

No-Delay: Prohibits delay statements and
semantic dependence on package Calendar.

The Annex also defines the following restrictions
(see the Annex for their definitions):

No-Task-Hierarchy
No-Abort-Statement
No-Implicit-Heap-Allocation
Max-Task-Entries
Max-Asynchronous-Select-Nesting
Max-Tasks
No-Protected-Types
No-Local-Allocators
No-Unchecked-Deallocation
Immediate-Reclamation
No-Fixed-point
No-Unchecked-Conversion
No-Unchecked-Access
No-Recursion
NoReentrancy

ANNEX H RAPPORTEUR GROUP

In recognition of the importance of safety-critical
software and of Annex H, the IS0 working group
responsible for the Ada standard (WG9) established
the Annex H Rapporteur Group (HRG) in April,
1995. The charter of the group is as follows.

HRG Charter Approved by WG9,28 April 1995-
The HRG will synthesize the essential requirements of
typical sector-specific standards for high integrity applica-
tions which have a bearing on Ada and its supporting
tools. Guidance, including interpretation and amplifica-
tion of Annex H will be developed for users, implementers,
evaluators and certifiers. The guidance produced will be
in a form suitable for reference in procurement.

Sector-specific standards to be considered are such as:

DO-178B (Civil avionics)
IEC 65NCENELEC (Generidrail)
IEC 880 (Nuclear)

ITSEC (EU Security)
Interim DEFSTAN 00-55 (UK Defence)

The HRG will undertake the following activities:

Annex H Issues

The HRG will produce and maintain an interpretations
document.

50

The HRG will investigate pragma enhancement, such as
additional parameters for restriction pragmas and addi-
tional pragmas.

The HRG will provide implementation advice, covering
areas such as compilation and validation.

Taxonomy of Techniques

The HRG will produce a taxonomy of techniques for the
construction and analysis of high integrity software, such
as:

Q

Static timing analysis

The use of annotations in program construc-
tion
Error detection by static analysis
Design confirmation by static analysis

Language Issues

The HRG will investigate the interaction of language
issues with high integrity requirements, such as:

Concurrency

Deterministic execution with compiler opti-
mization and other property-based subsets

Issues of migration from Ada 83

Bindings and Interfaces

The HRG will support the interoperation of high integrity
software and tools with other systems, such as:

ASIS (Ada Semantic Information Specifica-
tion)
Ada compilers and run-time environments
CORBA (Common Object Request Broker
Architecture)

Anyone interested in more information about the
HRG should contact Brian Wichmann of the
National Physical Laboratory, United Kingdom (E-
mail: baw@ditc.npl.co.uk). The next meeting of the
group is scheduled for September 14-15, 1995.

CONCLUDING RERlARKS

This paper has presented an overview of some of the
facilities provided in Ada 95 to help support the
development of safety-critical software. In particu-
lar, the paper has concentrated on those facilities
defined in Annex H of the language standard. The
discussion has presented an overview only; those
readers interested in additional details should con-
sult the referenced documents directly. Readers
with access to the World-Wide Web might want to
consider browsing the following URL's:

a

* http://lglwww.epfl.ch/Ada/LR1WSX/rm9d ington, DC. Ada 9X Requirements, Decem-
rmgx-H.html-- text of Annex H. ber 1990.

[lo] Ada 9X Project Office, Office of the Under
Secretary of Defense for Acquisition, Wash-
ington, DC. Ada 9X Requirements Rationale,
May 1991.

http://lglwww.epfl.ch/Ada/LRM/SXmatio-
nale/rat95htmI/rat95-~3-h.html -- text of the
Rationale for Annex H.
httpd/www.npl.co.uk/npl/ditc/seg/hrg/info-
pack.htm1 -- information on the HRG
httpd/atb-www.larc.nasa.gov/fm.html -- this
URL contains information on the formal methods
program at NASA Langley Research Center,
which includes work related to Ada and to safety-
critical software.

REFERENCES

[51

[71

[91

ANSUISOIIEC-8652: 1995. Ada 95 Refer-
ence Manual, January 1995.

Intermetrics, Inc., Cambridge, Massachu-
setts. Ada 95 Rationale, January 1995.

IS018652: 1987. Reference Manual for the
Ada Programming Language, 1987.

American National Standards Institute,
ANSI/MIL-Std- 18 15a. Reference Manual
for the Ada Programming Language, 1983.

J. Barnes. Zntroducting Ada 9X. Ada 9X
Project Office, Office of the Under Secretary
of Defense for Acquisition, Washington, DC,
February 1993.

Defense Advanced Research Projects Agen-
cy, United States Department of Defense,
Arlington, Virginia. Department of Defense
Requirements for High Order Computer Pro-
gramming Languages: STEELMAI?, 1978.

Ada 9X Project Office, Office of the Under
Secretary of Defense for Acquisition, Wash-
ington, DC. Ada 9X Project Plan, January
1989.

Ada 9X Project Office, Office of the Under
Secretary of Defense for Acquisition, Wash-
ington, DC. Ada 9X Requirements Work-
shop, June 1989.

Ada 9X Project Office, Office of the Under
Secretary of Defense for Acquisition, Wash-

509

http://lglwww.epfl.ch/Ada/LR1WSX/rm9d
http://lglwww.epfl.ch/Ada/LRM/SXmatio

